PSYC 60 – Statistics Spring 2012 Notes #8 - Part II (Originally labeled #9)

Exercise: Dependent versus Independent t-test

Detecting differences between WATER and GATORADE for marathon times. *Main question: Which test, dependent or independent, has a better chance of detecting an effect?*

First: Independent 2-sample t-test

Water Group		Gator	ade Group				
	Observed		Baseline	Gatorade	Observed		
	time		time *	effect *	time		
A:	5.25 hrs	D:	(5.25 hrs	-1.25 hrs) =	4.0 hrs		
B:	4.5 hrs	E:	(4.5 hrs	-0.75 hrs) =	3.75 hrs		
C:	3.75 hrs	F:	(3.75 hrs	-1.0 hrs) =	2.75 hrs		
(* = unknown to experimenter)							

What are the typical marathon times for individuals drinking water?

What are the typical means times for groups of 3 runners drinking water?

What are the typical *differences in sample mean* for a water versus gatorade group if there was no effect?

If the gatorade group recruited a runner with an unusually slow baseline time (8 hours), how does that affect the *difference in water and gatorade sample means*?

If the water group happened to recruit people with unusually slow times, is the same automatically true for the gatorade group?

For the independent t-test, what are three sources of variability that prevent the difference in group times from always being 1 hour?

1. Variability in ...

2. Variability in ...

3. Variability in ...

Perform t-test t* calculated t Significant?

Second: Dependent 2-sample t-test

Water condition		Gato	Difference			
	Observed		Baseline	Gatorade	Observed	
	time		time *	effect *	time	
A:	5.25 hrs	A:	(5.25 hrs	-1.25 hrs) =	4.0 hrs	-1.25 hrs
B:	4.5 hrs	B:	(4.5 hrs	-0.75 hrs) =	3.75 hrs	-0.75 hrs
C:	3.75 hrs	C:	(3.75 hrs	-1.0 hrs) =	2.75 hrs	-1.0 hrs

What are the typical differences between water & gatorade for individual runners?

What are the typical *mean differences* for a water versus gatorade group?

If the experiment recruited a runner with an unusually slow baseline time (8 hours), how does that affect the *mean difference*?

If the water condition happened to show unusually slow times, would the same be expected in the gatorade condition?

For the dependent t-test, how many sources of variability prevent the difference in condition times from always being 1 hour?

1. Variability in...

- 2. Variability in...
- 3. Variability in...

Perform t-test

t*

calculated t Significant?

<u>Summary</u>

Which test, dependent or independent, has a better chance of detecting an effect?

Why?