PSYC 60 – Statistics Spring 2012 Notes #7

Test Selection

Example A	Example B	Exai	nple C		Example	D
IQ:	UCSD GPAs:	Weight loss:		BP Clinical Trial:		
$\mu = 100$	$\mu = 3.01$		<u>Before</u>	<u>After</u>	<u>Drug</u>	<u>Placebo</u>
σ = 15.	Transfer student	A:	180	172	80	90
Sample: 103	sample: 3.1	B:	135	132	85	93
105	2.9	C:	145	147	86	87
99	3.3					89

2-samples, Dependent

Book: Chapter 15 - t Test for Two Related Samples (Repeated Measures) Excluding 15.9

Example: A dietician follows a sample of individuals and calculates the number of pounds that each person changes over a diet program. For example, DIFFERENCE for person A = -8 (lost 8 lb.) and DIFFERENCE for person C = 1 (gained 1 lb.). He loses the actual before & after weights but still has the difference values. What is the hypothesis test that he should perform to determine if the program helped people lose weight?

If we have	values for 2 dependent samples,
we can perform a	

Based on the raw data below, did participants in the program have a statically significant amount of weight loss? (This example is a 1-tailed test, but 2-sample dependent tests can be either 1 or 2 tailed)

<u>ID</u>	<u>Before</u>	<u>After</u>
Α	180	172
В	135	132
C	145	147

Characteristics of a 2-sample dependent (repeated measures) test:		
Procedure: 1. Match the two measures for each entity		
2. For each entity, calculate avalue.		
3 the data for the 2 conditions.		
4. Treat the difference values just as you would sample values and perform a		
Formulas: All formulas are familiar, they just use instead of		
SE of the sample mean		
how much sample means deviate from the mean of the population SE of the sample difference		
how much sample differences deviates from the mean of population differences		
Examples: Before/After measurements		
Drug/Placebo (must return to baseline) With/Without glasses		
Counterbalancing		
Participation in one condition may affect performance in another Have half the participants participate in condition A first, the other half does B first		
With before / after measurements, the effect could always be due to		
Counterbalancing -		