PSYC 60 – Statistics Spring 2012 Notes #4

Review: Probability of individual scores

Book: Section 5.5 – Finding Proportions (but read all of Chapter 5)

book. Section 3.5 I maing Proportions (but read an of enapter 3)						
To estimate the probability of a selecting an individual score in a certain range, we need to know:						
The probability of selecting any exact value, (e.g. 94.13463) is						
Review: symmetry of z-table, looking up negative z-scores						
Probability of sample means						
We do experiments with sample sizes to allow chance effects to						
If there is an effect, it will increase or decrease the sample						
We need a way to determine the probability of						
Distribution of Comple Magne (DCM)						

Distribution of Sample Means (DSM)

a.k.a "Sampling Distribution of the Mean" in book

Book: Chapter 9 – Sampling Distribution of the Mean Video: "Distribution of Sample Means", Professor Parris youtube.com/watch?v=UkFA9hS7-Wc (skip to 20:56 - 30:53)

Procedure:

- 1. Determine the sample size (n)
- 2. Randomly select a sample of size n from the population
- 3. Calculate and record the sample mean
- 4. Repeat this MANY times, creating a list of sample means

Definition

Properties

Mean of the DSM

Std. dev. of DSM

Sample size

Standard Error of the Mean (SEM)					
Formula:					
Meaning:					
Use:					
Central Limit Theorem					
If a distribution isn't normal, we can not					
Central Limit Theorem says: Regardless of the shape of the, the shape of the is approximately if the sample size is					
The distribution of sample means is normal: - if the original population distribution is if the sample size is					
Revisited: Standard Deviation of a Sample					
<u>Population</u> <u>Sample</u>					
Degrees of freedom (df)					
Computational formulas: found in book but you do NOT need to know these for this course					

Our first complete hypothesis test

Assume we know that mean IQ score is 100 and SD = 15. We want to test whether a Kaplan course increases IQ scores. We will take a random sample of 50 students, put them through the Kaplan course ,then test their IQ.

Hypotheses:
What happens by chance?
What is our alpha?
What is our decision rule (criteria)?
We find the sample mean is 103.1 Did the sample mean pass our decision rule (criteria)?
Probability of getting this sample mean by chance:
Conclusion:
<u>Z-test</u> Book: Chapter 10 – Introduction to Hypothesis Testing: The z Test
The test we have learned is the
We use this kind of test when:
We would use a different kind of test if: (don't have to learn these yet):

Hypothesis Testing

Steps:						
жерз.	1.	State the				
	2.	Specify the				
	3.	Determine the				
	5.	Make a				
<u>Hypot</u>	<u>hes</u>	<u>ses</u>				
Null		hypothesis predicts that there	 			
Altern	ativ	ve hypothesis predicts that there				
Formu	las	:				
Null hypothesis:						
Alt hypothesis:						

Review					
Forms of chance:					
If we know that chance is operating, we can not:					
If we can quantify what happens by chance, we can:					
<u>Distributions</u>					
Values Frequency					
Cumulative Frequency					
Shapes					
Effects					
Samples and Populations					
<u>Population</u> <u>Sample</u>					
Definition:					
Characteristics:					
Formulas:					

x –	Z	_	p

Effect size

Variability

Sample size

Alpha