Notes 11 Questions

Different means

What technique quantifies whether there are two different distributions with different population means?

- A. Confidence interval
- B. Hypothesis test
- C. 2-sample t-test
- D. Regression

Standard Error 1

Which error bars will include a wider range?

A. Standard deviationB. Standard error

Standard Error 2

When error bars = 1 standard deviation, they show were $\sim 68\%$ of the row scores are.

If error bars = 1 standard error, what do they show?

Standard Error 2

When error bars = 1 standard deviation, they show were $\sim 68\%$ of the row scores are.

If **error bars = 1 standard error**, what do they show?

A. Where ~90% of the points are
B. Where the true population is likely to be
C. The ~68% confidence interval
D. More than one of these

Confidence Interval

How big should the error bars be for the 95% confidence interval?

- A. standard deviation * 0.95
- B. standard deviations * 2
- C. standard error * 0.95
- D. standard error * 2.262

Differences

Which graph has the **largest difference between means**?

A. leftB. middleC. top

Differences

Which graph is most to have data from **two different populations**?

A. leftB. middleC. top

Test selection

Which test compares a sample mean with a population mean of unknown variability?

- A. z-test
- B. 1 sample t-test
- C. 2 sample t-test, independent
- D. 2 sample t-test, dependent
- E. chi-square

Estimating values

What value do we NOT need to estimate from the graph for the t-test?

- A. sample mean
- B. sample standard deviation
- C. population mean
- D. population standard deviation

Dependent

If the effect (difference between gatorade and water) is reliable, what pattern will emerge?

- A. intersecting lines
- B. parallel lines
- C. horizontal lines

Correlation

How are **relationship strength (variability)** and **exchange rate (slope)** related?

A. if the relationship is strong, the slope is always steepB. if the relationship is weak, the slope is always steepC. the relationships strength does not necessarilydetermine the slope

<u>Variability - Bar graphs</u>

How is variability represented in bar graphs?

A. height of the barB. differences in height of different bars

C. error bars

Variability - Correlation

How is variability represented in scatter plots?

A. slope of lineB. closeness of fit to lineC. number of points