Notes: Synapse

PDF

Overview

Neurotransmitter Conversion from an _____ signal to attached to receptor Neurotransmitter released into synapse a_____ _____ signal - electrical signal is the Dendrite Axon - chemical signal is the Neurotransmitter Enzyme that destroys Presynaptic - refers to stored in vesicles neurotransmitter that sends/receives the signal Postsynaptic - refers to ____ that sends/receives the signal (PSP) the membrane potential on the dendrite that is affected by activity in the synapse Dendrites Soma (cell body)

Axodendritic Synapse

Axon

Axon

Axosomatic Synapse Axoaxonic Synapse

Source: faculty.washington.edu/chudler/synapse.html

Directed and non-directed synapses

- depends on proximity between neurotransmitter and receptor

Neurotransmitter

The unit of communication between neurons

_____ neurotransmitters

- cause the post-synaptic neuron to depolarize/hyperpolarize, more/less likely to fire
- Excitatory Postsynaptic Potential (EPSP)

____ neurotransmitters

- cause the post-synaptic neuron to depolarize/hyperpolarize, more/less likely to fire
- Inhibitory Postsynaptic Potential (IPSP)

Neurotransmitters will only influence the cells that have a receptor for it

AN A		Lifecycle of neurotransmitter
sending kno neuron Ves	aptic b icles aptic	Synthesized in cell
Receiving		Packed into
with plasma		released into synapse
SYNAPTIC CLEFT	Neurotransmitte	arriving action potential causes influx of Ca++ ions, which trigger exocytosis
Ion channels RECEIVING NEURON		Interact with
Neurotransmitter Neurotransmitter broken Receptor down and released		a molecule in the post synaptic membrane that reacts to
lons	\$	neurotransmitter
		sometimes there are presynaptic receptors (autoreceptor)
Ion channel opens Addison Wesley Longman, Inc.	6 Ion channel closes	Removed from synapse
		- reuptake transport

- enzymatic degradation
- diffusion

Receptors

Ionotropic

Permits the flow of ions

Ligand-gated, as opposed to voltage-gated

channels in action potential

Neurotransmitter can cause channel to open

or close

For example:

if Na+ channels are opened, cause EPSP/IPSP

if K+ channels are opened, cause EPSP/IPSP Fast/short acting

Metabotropic

G-protein-coupled receptor Subsequently can effect

- ion channels
- 2nd messenger

2nd messenger can alter DNA expression, having effects on cell functioning Slow/long acting

Integration

A depolarization at one synapse is typically not enough to trigger an action potential Each neuron can receive signals from 1000s of synapses Integration - combining many different signals to determine if an action potential occurs

Temporal Integration depolarizations that _____ may combine to cause an action potential

Spatial Integration depolarizations that _____ may combine...

Types of neurotransmitters

More than 100 identified neurotransmitter substances

_____ (small NT)

Molecules that make up proteins, found in our diet

Most common neurotransmitters for fast acting, directed synapses

______ - main excitatory transmitter, sensory & learning systems

_____ - main inhibitory transmitter

_____ (small NT)

Not a typical synapse NT

Release NT broadly throughout brain

Produced by cells in the brain stem

More likely to modify "global" function/state of the brain

_____ - motor function and reward

______- - (adrenaline, adrenergic)

_____- (nor-adrenaline, nor-adrenergic) - brain arousal, mood, hunger, sleep

_____ - mood, temperature, aggression, sleep

_____ (small NT)

Neurons are called cholinergic

Location

Neuromuscular junction

Throughout autonomic system (parts of our nervous system NOT under voluntary control) In parts of central nervous system - cortical arousal, memory

_ (large NT)

Full proteins made up of many amino acids

>100 neuropeptides

Many have role as both neurotransmitter and hormone

Typically act at metabotropic receptors

Examples: endorphins, enkephalin (another opioid), Neuropeptide Y (food intake)

Long lasting effects

Drug action

Antagonist - decrease the effect of a neurotransmitter

Agonist - increase the effect of a neurotransmitter

Receptor agonists

Nicotine - stimulates acetylcholine receptors

Receptor blockers

Botox - nicotinic receptor antagonist

Reuptake blockers

Cocaine, amphetamines - impairs dopamine transporter

Source: http://www-scf.usc.edu/~uscience/adderall_abuse.html

Gap Junctions

A direct connection between the cytosol (internal fluid) of two cells Faster than a chemical synapse Doesn't require neurotransmitters Not common in the brain, but extensive in heart muscle and retina

Synaptic Plasticity

Changes in connections between neurons can produce changes in behavior

"Neurons that fire together, wire together"

- paraphrasing Donald Hebb's 1949 theory of memory

Long Term Potentiation (LTP)

Typically studied in hippocampus

Process

- 1. Put a STIMULATING electrode in the upstream (presynaptic) neuron
- 2. Put a RECORDING electrode in the downstream (post-synaptic) neuron
- 3. Record the reaction of the downstream neuron to a single upstream stimulation
- 4. Provide high-frequency, high-intensity stimulation to upstream neuron (no measurement)

5. Record the reaction of the downstream neuron to a single upstream stimulation

Increased response in downstream neuron

Can be measured months later

Requires pre- and post- synaptic neurons to both have action potentials

Induction

Source: http://employees.csbsju.edu/Itennison/PSYC340/learning.htm

LTP Requires _____ receptors

NMDA receptors allow Ca++ to enter

Ca++ causes changes in cell functioning, such as creating new receptors

NMDA receptors are excited by _____

and require post-synaptic neuron to already be partially _____

NMDA are able to detect the co-occurrence of

_____ and _____ depolarization

Maintenance/Expression

The post-synaptic neuron does not strengthen connections with all pre-synaptic neurons, only across synpases that were depolarized

LTP requires protein synthesis

Neuron is making new ______ to "build" or strengthen the synapse

Relation to behavior

LTP is a model for memory, and memory is probably "like" LTP, but LTP is an artificial technique done in a laboratory setting

Rats learning a maze task fail to learn if NMDA receptors are blocked (Morris et al 1986)

Rats learning an avoidance task produce new AMPA receptors, the same receptors produced by LTP. Also, in vitro synapse that were potentiated during training could not be further induced by LTP. (Whitlock et al, 2006)

Animals undergoing fear conditioning show evidence of LTP-like processes (Rogan et al, 1997)

Learning in a Sea Slug

<u>Aplysia</u>

A sea slug with 200 neurons studied by Eric Kandel Has a gill which it will withdraw if its siphon is touched

These are two examples of synaptic changes that explain an animal's behavior

Habituation

Source: http://michaeldmann.net/mann18.html

If the siphon is repeatedly touched, the gill withdrawal reflex disappears

With repeated activation, the neurons contain less dopamine and release less dopamine each time

Eventually gill withdrawal stops

A "short term" change in synaptic activity that does NOT require building new proteins

Sensitization

Source: http://michaeldmann.net/mann18.html

- If the tail is shocked at the same time the siphon is touched: Gill is more vigorously withdrawn to a siphon touch
 - Siphon has become "more sensitive"

Facilitating interneuron releases serotonin onto sensory neuron

Causes the sensory neuron to release more neurotransmitter when the siphon is stimulated Causes motor neuron to react more vigorously

A "short term" change in synaptic activity that does NOT require building new proteins (can be made "long term" with more training)

Copyright 2012-2013 - Michael Claffey