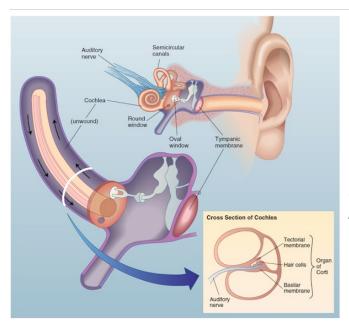
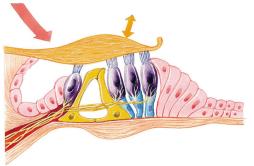
Notes: Other Senses

PDF

Hearing

Sound


a wave of air pressure

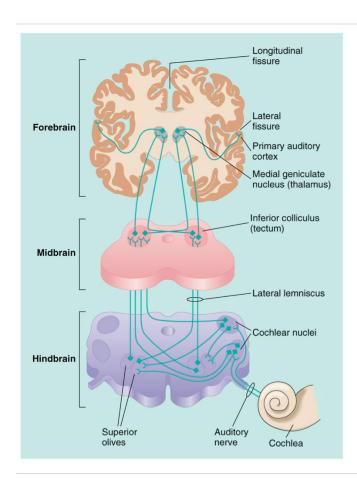

amplitude of the wave - ______ (with some caveats)

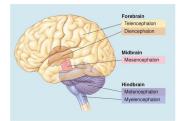
complexity (how many frequencies) - ______

natural sounds are made up of many different frequencies

<u>Ear</u>

Source: http://www.oup.co.uk/oxed/children/oise/pictures/light/earhaircells/


cross section of inside of cochlea


tympanic membrane (ear drum)
cochlea
semicircular canals (vestibular system)
contain fluid and hair cells to detect movement
direction & intensity of head movements

two different membranes have hair stretched between them sound vibrations cause shearing force on hairs mechanical disruption from shearing force allows ions to flow through membrane increased firing in auditory nerve

tonotopic organization - by _____

Auditory pathways

cochlea ->

auditory nerve ->

hindbrain ->

cochlear nuclear - input from only one ear

(From here on input from one/both ears)

superior olives - sound localization

thalamus

medial geniculate nucleus

primary auditory cortex

Auditory Cortex

primary auditory cortex - inside (medial) temporal lobe functional columns organized by frequency

stimulation leads to perception of	
secondary auditory cortex - outside (lateral) temporal lobe stimulation leads to perception of	
pathways leaving the auditory cortex anterior auditory pathway - towards prefrontal cortex	a sound is
posterior auditory pathway - towards parietal lobe	_ a sound is
posterior parietal cortex neurons in monkeys that respond to both vision and sound integrating vision and hearing	
Audition is not as extensively mapped out as vision	

<u>Damage</u>

Lesions to auditory cortex = only temporary deafness

Long term problems with sound localization and pitch differentiation

damage to cochlea or auditory nerve = _______ deafness
loss of hair receptors
characteristic of age-related hearing loss

perception of ringing ("ringing in the ears") = ______
cutting auditory nerve from ringing ear doesn't eliminate ringing
may originate in the central nervous system

Somatosensory system

somatosensory - sensations of the body stereognosis - identifying objects by touch

Cutaneous Receptors

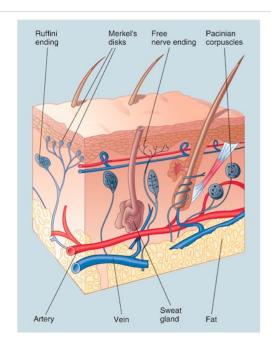
principle

fast versus slow adaptation

fast are necessary for quick responses but, without adaptation, would be overwhelmed by continuous stimuli

Mechanoreceptors

Perceive pressure, vibration (texture), stretch


Thermoreceptors

detect changes in ______
typically free nerve endings (not specialized structures)
different receptors for detecting heat and coolness

Nociceptors

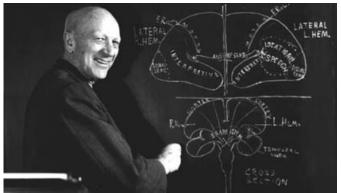
noci = _____

detect stimuli that could be damaging to tissue
receptors for: extreme temperature, skin deformation, skin incision,
chemicals (capsaicin)
fast & slow conducting channels - immediate and chronic pain

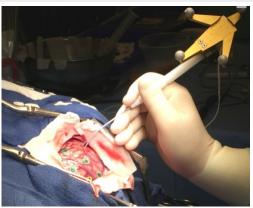
Somatosensory Pathways

dermatomes

nerves from cutaneous receptors enter the dorsal route of the spinal cord areas of the body that carry information to the same segment of the spinal cord are called dermatomes


1.	dorsal-column	medial-lemniscus	system
			- ,

information about ______ spinal cord -> ventral posterior nucleus (thalamus) -> primary/secondary somatosensory cortex or posterior parietal cortex 3 neurons from toe to cortex

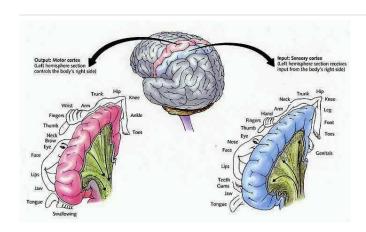

2. anterolateral system

information about
3 different tracts to different areas of the brain
lesions of spinothalamic tract reduce sensitivity to

Somatosensory Cortex

Source: http://www.mcgill.ca/about/history/more-history/firsts/1950

Source: http://www.isis-robotics.com/en/references.html

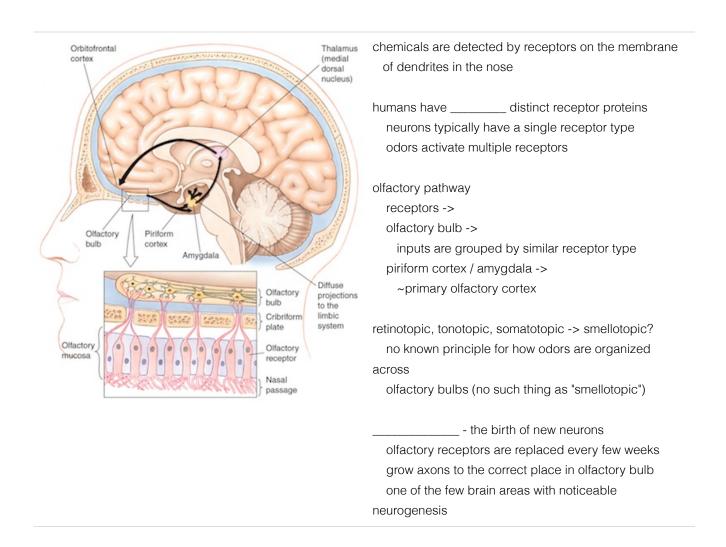

1937 - Dr. Wilder Penfield electrically stimulates the cortex of patients finds an area that produces sensations through out the body somatosensory cortex

__ organization

areas of the body that are close together are represented close together in the brain like retinotopic and tonotopic

somatosensory _____

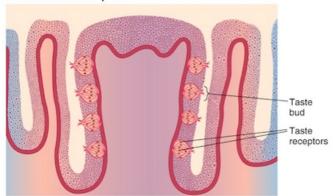
a "little man", or representation of the body in the somatosensory cortex larger areas of cortex dedicated to areas of the body with greater sensitivity



Source: http://daphne.palomar.edu/ rmorrissette/physio/studentwebpages/

2006spring/phantom%20pain/web%20page.htm

contralateral input to primary somatosensory cortex
the side of the brain receives input from only the side of the body (and vice versa)
secondary somatosensory cortex
just ventral to primary somatosensory cortex
receives input from both sides of the body
receptive fields
excited by stimulus to a given area on the body
inhibited by stimulus to the surrounding areas
cortical organization
columns (moving down from the surface) - all neurons tend to respond to same area of body
strips (moving across the surface) - different stimulus types: touch, temperature, pain
posterior parietal cortex
receives information from both primary and secondary cortex
we already learned: also receives input from visual and auditory cortex
contains neurons that response to two senses, like vision/touch
for a given neuron, the visual field "moves" to stay with corresponding part of the body
case study: W.M using your hand to improve visual attention
this area of the brain information for different senses
Chemical sense
the "oldest sense"
even single cell bacteria can sense chemicals in their environment
smell, detecting chemicals in the air
taste, detecting chemicals in the oral cavity
the combination of smell and taste


Olfactory System

Gustatory System

Surface of Tongue Papillae

Cross Section of a Papilla

	clusters of approximately 50 taste
receptors	

taste receptors

do not have axons many taste receptors pool to an output neuron 33 receptor proteins identified

conventional tastes

1. sweet	, 2 known receptors
2. sour	, influence ion channels
directly	

2	hittor	20	Language	receptors
٠n.	Onner	7()	KIIOWII	receptors

4. s	salty -	,	influence	ion	channels	directly
------	---------	---	-----------	-----	----------	----------

pathway

leave tongue along 4 different nerves ->
(thalamus) ventral posterior nucleus ->
primary gustatory cortex (near somatosensory cortex)

&

secondary gustatory cortex (inside lateral fissure)

Copyright 2012-2013 - Michael Claffey