Notes: Organization

Version: 8/4/13 - adapted from Hans Peterson's notes 10/30/12 - original version

Anatomical Directions in Humans

Planes of the Brain

Anatomy of the Nervous System

Responsibilities:

- and ______ information from the body
- the activity of the body

Peripheral Nervous System

_____ neurons - carry sensory signals from the body that arrive in the brain _____ neurons - carry motor signals to the body that exit the brain

Somatic System

_____ control of body movements

Autonomic System

controls visceral functions, largely outside of _____

Sympathetic

Engages the body's ______, increase/decrease energy expenditures Heart Rate: Digestion: Respiratory Rate: Perspiration:

Parasympathetic

Engage the body's ______, increase/decrease energy expenditures

Central Nervous System

Consists of the _____ and _____

Spinal Cord

Primary functions:

- 1. Conduct ______ information from the brain to the muscles
- 2. Conduct ______ information from the body to the brain
- 3. Contain circuits for _____ and pattern generation

______ – makes up the outside of the spinal cord, consisting of highly myelinated axons that carry information either up or down the spinal cord

______ – the inner component of the spinal cord, primarily composed of cell bodies and ______, which allow motor and sensory neurons to communicate

_____ side - afferent/efferent (sensory neurons)

______ side - afferent/efferent (motor neurons)

Protecting the Brain

The ______ provides protection against impact and force. Underneath the skull is the _____, which act like a wrapper.

_____ provides cushioning and is involved in the healthy exchange of molecules.

produced in the _____, which are several large hollow cavities throughout the brain.

Chemical Protection

The brain is protected by foreign chemicals by the ______, a tightly-packed system of cells wrapped around blood vessels walls that prevent many molecules from entering the brain. Advantages – Protects from foreign bodies, and thus brain infection is quite rare

Disadvantages – Because the blood brain barrier prevents many molecules from reaching the brain, it is difficult to develop pharmaceuticals that can act upon the brain.

Brain Subdivisions

Myel-encephalon

_____ Involved in various autonomic processes in the body, including respiratory and cardiac functioning.

_____ Involved in sleep-wake cycle and habituation.

Met-encephalon

_____ Also autonomic functioning such as regulating breathing

_____ motor behavior, balance, movement and coordination

Mes-encephalon

Mid brain

- preliminary vision & auditory processing
- rich in dopaminergic neurons movement and reward
- motor coordination and communicating with the cerebellum and motor cortex
- processing pain

Di-encephalon

- regulatory gateway
- all sensory input goes through the thalamus
 - visual input in Lateral Geniculate Nucleus (LGN)
 - auditory input in Medial Geniculate Nucleus (MGN)
- links the nervous system to the endocrine system via the pituitary gland
- regulates body temp, hunger, thirst, and other autonomic process

Cerebral cortex

Cortical layers

2-4 mm thick with white matter underneath cortex has layers that differ in neuron organization some layers consist mostly of:

> ______ from ______neurons____ signals arriving from other areas of the brain (______)

densely packed neurons with many synapses (_____)

_____ of neurons whose

axons project to other cortical areas (_____)

______ cells one of the main types of neurons in the cortex large multipolar (many extensions) neurons many dendrites extending up towards surface of cortex large axon that extends down and then to other areas of the cortex these axons are what make up the white matter integrates signals and communicates to other areas of the brain

Occipital Lobe

dedi	cated to processing	input		
infor	mation proceeds from	to		processing
cells sensitive to edges, color, shapes, orientation				
spec	ialized areas for	and		
Ventral vs dorsal stream				
inf	ormation flowing along dorsal st	ream process	ses	objects are
inf	formation flowing along ventral s	ream proces	ses	objects are

Parietal Lobe

_____ cortex - receives sensory input from body

_____ cortex integrating vision (dorsal stream) / hearing / touch attention sense of space and our bodies relation to space

Temporal Lobe

superior temporal gyrus (top) - _____ and _____

inferior temporal gyrus (bottom) - "what" or ventral stream of ______

medial temporal lobe (inside) - hippocampus, declarative ____

Frontal Lobe

primary motor cortex (______ movement control)

secondary motor areas (______ movement control)

prefrontal cortex - advanced ______ functions, _____

"pre" meaning before or in front of

Subcortical Structures

"subcortical" is everything under the cortex (the very outer surface) includes areas introduced above: thalamus, hypothalamus, medulla, pons, cerebellum includes the limbic system & basal ganglia

Limbic system

circles the thalamus (limbic is Greek for ring) regulates the four Fs of behavior: fighting, fleeing, feeding, and _____

Areas

declarative memory knowledge that can be declared as oppose to procedural memory

(Greek: almond) emotional learning, fear & aggressive behaviors

Basal ganglia

Serves as the ______ for selecting movement It is as though the cortex is "proposing" many different actions and the basal ganglia selects only one

May also select ______ and _____ decisions

Consists of:

- caudate (dorsal striatum)
- putamen (ventral striatum)
- globus pallidus
- subthalamic nuclei

Copyright 2013 - Michael Claffey