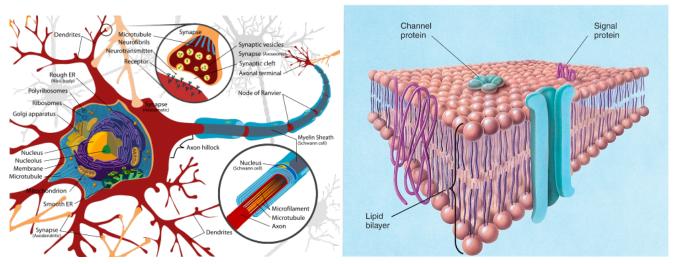
Notes: Neuron

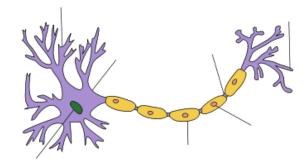
Stained Florescent Hand Drawing (Ramon y Cajal) Computer Graphic Microscopy Source: Source: http://thetechjournal.com/science http://nobelprizewatch.wordpress.com /neuron-implantation-can-rewire-brain-Source: http://phys.org /2011/12/06/ itself.xhtml /news175417796.html **Background** Functional unit of nervous system A cell specialized for the _____ and _____ of signals _____ billion in adult human brain (source) Uses ______ and _____ systems to communicate In central nervous system In peripheral nervous system clusters of cell bodies bundles of axons

Cell basics

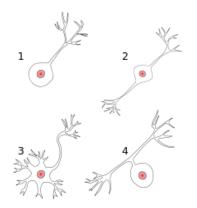

Nucleus & DNA

Membrane

Organelles


Mitochondria

Energy metabolism: constant need for _____ and _____


Sources: http://en.wikipedia.org/wiki/Neuron#Anatomy_and_histology (left), Pinel (right)

Structures for communication

Source: http://en.wikipedia.org/wiki/Neuron

Types of neurons

http://en.wikipedia.org/wiki/Neuron#Functional_classification

Glial Cells

Support cells Generally outnumber neurons (as much as 10:1 in some parts of the brain)

Oligodendrocytes myelin extensions wrap around axons in central nervous system provides myelin to multiple neurons

Schwann cells provides myelin in peripheral nervous system 1 Schwann cell per axon can aid in regeneration

Microglia aid in recovery, part of inflammation process

Astrocytes

historically seen as "glue" or support cells increasingly recognized for communication abilities part of blood-brain-barrier and may regulate blood flow recycle neurotransmitters

Resting Potential

Where is this going:

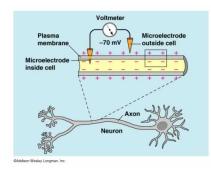
The neuron is going to rapidly move ions across its membrane

It spends the energy in advance to setup for this action

Potential

Energy that is available to do work Ball at top of slope, spring, laptop battery

Chemical gradients

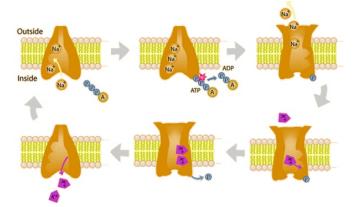

Example of non-charged particles diffusing across barrier to reach equilibrium

Concentration gradient - the "downhill" change in concentration

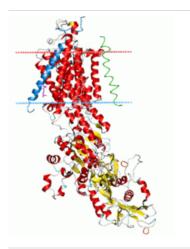
Electrical gradients

lons - molecules that carry a negative or positive charge

Electrostatic pressure - the force pushing molecules down the gradient (space below is intentionally blank for drawing)



Source: http://www.anselm.edu/homepage/jpitocch/genbio/nervousnot.html


Sodium-Potassium Pump

A pump that moves ______ out and ______ in by using ______

(The brain uses about 20% of your daily calories, this is a major component)

Source: http://hyperphysics.phy-astr.gsu.edu/hbase/biology/nakpump.html

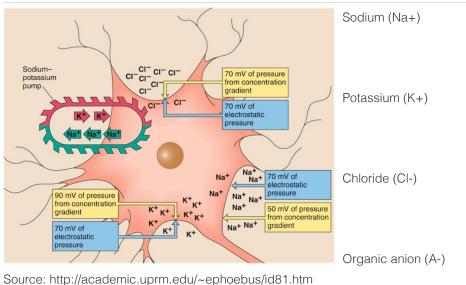
Not really a pump, but just a _____

Source: http://en.wikipedia.org/wiki/Na%2B/K%2B-ATPase

Channels

Proteins embedded in the membrane that allow molecules to ______ diffuse through

Voltage-gated channels - open and close in response to _____


Ligand gated - open and close in response to _____

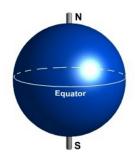
Na+ channel - _____ at negative potentials, slower/faster to respond

K+ channels - _____ at negative potentials, slower/faster to respond

Neuron's Resting Potential

Typical resting potential is ____

Action Potential


Where we are going:

How does a signal get passed down the neuron (along the axon) A sequence of events that disrupts the resting potential

Post-synaptic potentials

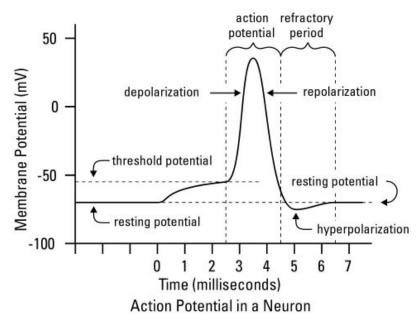
Axon terminals release neurotransmitters These neurotransmitters react with receptors on the next neuron Can cause the neuron to depolarize or hyperpolarize

Polarization

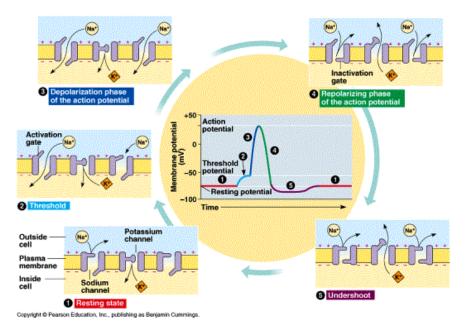
Source: http://www.polaris.iastate.edu/NorthStar/Unit1/activity1.htm

Depolarization

Hyperpolarization


Sub-threshold depolarization

Does NOT make membrane potential more positive than threshold (typically -65 mV) A little Na+ comes in, making the potential more positive K+ is pushed out by the incoming Na+ and the NaK pump is still working, so returns to resting potential


Above-threshold depolarization

DOES make membrane potential more positive than threshold (typically -65 mV) As it depolarizes, more and more sodium channels open Na+ starts coming in faster and faster, creating positive feedback Full action potential occurs Total number of ions flowing through membrane is relatively small, so concentrations do not change much

Stages

Source: http://www.dummies.com/how-to/content/understanding-the-transmission-of-nerve-impulses.html

Source: http://www.msdellasantina.com/Files%20AP/Ch%2048%20Neurons%2006_files/slide0078_image046.gif

Depolarization / rising phase

becoming more positive as Na+ channels open with all channels open, Na+ pushes potential up to +50 mV

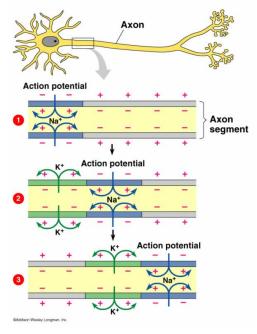
Repolarization

at maximum positive voltage, Na+ channels close & no-longer voltage sensitive

K+ channels eventually fully open

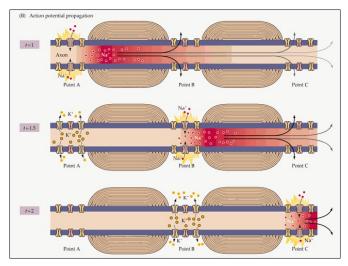
K+ pushes out until voltage goes negative

Undershoot


With K+ fully open, potential goes more negative than resting Once K+ go back to mostly-closed-but-leaky, returns to resting potential

Refractory Period

Immediately after firing, another depolarization will not trigger an action potential absolute refractory period - no action potential possible relative refractory period - action potential requires stronger depolarization a few milliseconds long


Where in the neuron

Starts at axon hillock (typically) Travels down axon Triggers events at axon terminals Does not automatically pass into next neuron

Source: http://www.anselm.edu/homepage/jpitocch/genbio/nervousnot.html

Saltatory conduction

Source: http://psych.hanover.edu/classes/sensation/WebNotes/Class04-2010.html

Myelin covers most of neuron with a few gaps lons only exchange across membrane at these gaps For reasons related to particle diffusion, this is faster than continuous conduction

Myelinated neurons (e.g. motor neurons) - 100 m/s Unmyelinated neurons - 1 m/s

Principles

All-or-none

One directional

Electrical

Fast

Active vs. Passive

Copyright 2012-2013 - Michael Claffey